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Abstract

We establish a technique to find the states with most robust entanglement in
dissipative quantum systems and explicitly construct those states for various
environments.

PACS numbers: 03.67.Pp, 03.67.Mn

1. Introduction

The potential to form entangled states is one of the central distinctions between quantum
objects and their classical counterparts. Therefore, the stability properties of entanglement
teach us a lot about the emergence of classicality in quantum systems of growing size. Besides
that—or also, even more importantly—entangled states are the central building block for
many promising applications [1] in quantum information theory, so that there is a considerable
interest not only in the preparation of highly entangled states, but also in the preservation
of entanglement over sufficiently long periods of time that allow us to execute a quantum
algorithm or different tasks.

Generally, entanglement decays due to environment coupling [2—4]. However, the decay
of entanglement does not necessarily follow that of the density matrices coherences. In
particular, since entanglement is not a linear function of the underlying quantum state, there
can be states whose entanglement is significantly more robust than that of other states.

2. Robust states

Here, we seek those states of a finite dimensional bipartite quantum system whose entanglement
is most robust in a given situation of environment coupling. That is, given an entanglement
measure E, we look for those states, for which the temporal increment E is maximal.

2.1. Target functional

Such tasks require an entanglement measure that can be evaluated or estimated easily.
Entanglement measures, however, are rather intricate to evaluate since most of them rely
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on a mathematical optimization procedure that can be solved without extensive numerical
optimizations only in exceptional cases. What we consider here, is not a measure E (o) itself,
but rather its time derivative E (o, 0), and the technical difficulties to evaluate the latter are
certainly not smaller than for the former.

Therefore, we make use of a purely algebraic estimate of concurrence [5] in terms of
a bilinear functional of the density matrix ¢. The concurrence of a bipartite pure state |\W)
can be defined via a spin-flip operation for two-level systems [5], or in terms of a linearized
entropy of the reduced density matrix of one of the subsystems [6], or, also, via the expectation
value of a suitably chosen operator with respect to the duplicate quantum state |V) ® |W) [7]
for systems of arbitrary finite dimension. The extension to mixed states can be performed
with the help of a convex roof [8] c(0) = inf ), p;|W;)(¥;|, where the infimum is to be found
among all pure state decompositions ¢ = ), p;|¥;)(¥;| of the state 0. Whereas this infimum
can be found algebraically only for small systems [9] or some special states [10], it can be
bounded from below by

c*(0) = tro® oV =: 1(0), (1)

for general states [11], where V = P_Q P_ —1/2(P_® P, + P, ® P_) is defined in terms of the
projectors P on the antisymmetric and symmetric components of the duplicated Hilbert spaces
of either subsystem. This is exact for pure states, and provides a very good approximation
for weakly mixed states, which makes it an ideal tool for the following investigations where
we will consider the decay of initially pure states into mixed ones. With this bound, we can
approximate the temporal increment of the tangle as

dc*(0)
ot
where the last equality is due to the permutation symmetry of V.

In the following, 7 in equation (2) will be maximized over pure initial states. Typically,
weakly entangled states show more robust entanglement than highly entangled ones, and
initially separable states have a vanishing temporal increment under coupling to local
environments. In order to ensure that our optimizations will not simply yield separable
states as those with most robust entanglement, we will fix the initial tangle 7 (V) = tj, and
seek those states with given 1y that maximize the temporal increment of the tangle

~1(0,0) =tu((0®e+0®0)V) =2u(@®0V), 2

Topt = Max (¥ (7, ow)|T (V) = 79). 3)

The only precondition for this task is that equations of motion for the system density matrix
are given, i.e., system Hamiltonian and environment coupling mechanisms are known.

2.2. Preferred basis

Like any entanglement measure, the tangle is invariant under local unitaries, and given this
invariance, any state can be represented in its Schmidt decomposition [12]

D Vaile) ® 16, “)

where all entanglement properties are described in terms of the Schmidt coefficients A;, and
{l¢:)} and {|¢;)} are local bases for the individual subsystems, the so-called Schmidt bases.
However, the environment coupling typically breaks this invariance for , i.e. in contrast to
7 which is a function of the Schmidt coefficients only, the time derivative ¢ also depends on
the Schmidt bases. Therefore, the present maximization cannot be restricted to a variation of
Schmidt coefficients only, but it has to be performed also of all possible choices of Schmidt
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bases. Nevertheless, most situations of environment coupling define a special basis, the
so-called pointer basis that consists of states that are most robust under environment coupling.
Performing numerical optimizations over general states we found that typically states with
such pointer bases as Schmidt bases have the most robust entanglement. We will therefore take
exactly those states, optimize over their Schmidt coefficients, and convince ourselves at the
end, with the comparison to numerical optimizations over general states, that this restriction
still allows one to find the states with the most robust entanglement.

Given an initial state in Schmidt decomposition, the most robust entanglement is then
determined by the solution of polynomial equations

Za% =0, and (V) = 10, 5)

where the prefactors «; need to satisfy Zi o 33(;') = 0 to ensure that the variation over the A;

is performed over states with a constant tangle. Such sets of polynomial equations can very
reliably and efficiently be solved with the help of Groebner bases [13]. The risk of finding local
instead of global minima that always affects numerical optimization is basically dispelled.

2.3. Environment models

To show our presently derived techniques to identify robust states at work we will focus in
the following on some exemplary situations of environment coupling. Specifically, we will
consider a description in terms of a Master equation [14-16] o = ), £;0, with a Lindbladian
Ly that acts like

Lio=y(2Ti0x] - T Ti0 - 0%[%)), (©6)
For coupling operators X we consider the case of local environments, where any such quantity
acts nontrivially only on a single subsystem, since this corresponds to the typical situation in

which the subsystems are macroscopically separated. In this case the two-particle operator
¥, is of the form

Yi=0®l, )

with a coupling operator o that describes the effective influence of the environment coupling
on the first subsystem, and analogously ¥, = 1 ® o for the second subsystem.

The two iconic models for evolutions of quantum states in quantum information processing
are the ‘amplitude damping’ channel that corresponds to 0 = o_ = (0, — i0,)/2, and the
‘phase damping’ channel that corresponds to o = o, [17] in terms of the Pauli spin operators.
Here, we consider generalizations of these situations to quantum systems with more than just
two levels. Typical generalizations to higher dimensional systems are often derived for the
harmonic oscillator, where the generalization of o_ is the annihilation operator @, and the
generalization of o, is the number operator n = a'a. This, however, is a rather specific
situation that cannot describe general experimental situations sufficiently well. For example,
there could be several excited states that have comparable life time, or rather different ones that
are incompatible with those resulting from the harmonic oscillator operators. We therefore
take the generalization

ou(g) = ) (i + D)L, (8)

l
of the harmonic oscillator case to describe decoherence. Here, there is the variable parameter
‘g’ that allows us to change the properties of the dephasing mechanism. The harmonic
oscillator case is recovered for ¢ = 1, but changing the value of g allows us to adjust the decay
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Figure 1. Schmidt coefficients of the states with the most robust entanglement against spontaneous
decay as a function of tangle t. The different insets correspond to different values of the parameter g
that characterizes the decay mechanism in equation (9). The Schmidt coefficients are distinguished
by their dashing with increasing length of dashing from A¢ (shortest dashing) to A3 (solid line).

rates for the coherences between different levels. As a generalization of spontaneous decay,
we take

oa(g) = Y (i + 1|0} (i + 1], ©)

that is the case where all excited levels decay to the ground state with adjustable decay rates.
This is different from harmonic oscillator case, where excited states decay to the ground state
via all lower lying states, but that it rather resembles the situation of an atom or ion with
several excited states that decay directly to the ground state.

Obviously, also these models cannot provide an exhaustive description of very general
dissipative dynamics. However, these two situations will provide a good insight in the interplay
of stability of entanglement and environment coupling, and situations with specific differences
as compared to equations (8) and (9) can easily be investigated along the lines that we present
in the following.

Figure 1 shows the Schmidt coefficients of the states with the most robust tangle against
environment coupling as given in equation (9) together with equation (6) as a function of tangle
t for different values of the parameter g. For tangles larger than 1, necessarily three Schmidt
coefficients need to be positive, and values larger than 4/3 require at least four positive
Schmidt coefficients. The right-most inset of figure 1 shows a situation with significantly
different decay times for the individual Schmidt-basis states. Third and fourth basis states are
occupied only for a value of t above the threshold values t = 1 and t = 4/3. This is different
in the case of comparable life times of the individual basis states as depicted in the left-most
inset. Here, the third and fourth levels are occupied already for significantly smaller values
of 7. That is, even if a given value of the tangle can be realized also with only two occupied
levels, it is actually favorable to occupy more levels, and thereby enhance the stability of
entanglement. This enhancement can be attributed to a larger occupation of the stable ground
state, as it can be seen in figure 1: whenever an additional level gets occupied, there is a kink
in the largest Schmidt coefficient that shows how the decrease of the population of the stable
levels is slowed down. Indeed, if enough excited levels are available, it is possible to realize a
given amount of entanglement with an occupation of the stable ground state that is arbitrarily
close to unity; and if the decay times of the excited states are comparable, then this is exactly
what yields the most robust states. If, however, the decay times of the excited states are more
broadly distributed, then it is actually beneficial to avoid excitation of fragile levels, which
results in a state with few finite Schmidt coefficients.

The situation is quite different in the case of decoherence that is displayed in figure 2. For
values of g that are smaller than 1, it is indeed favorable to occupy the levels |2) and |3), since
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Figure 2. Schmidt coefficients of the states with most robust entanglement against decoherence
analogous to figure 1. The different insets correspond to different values of ¢ defined in
equation (8).

the decoherence times for superpositions of the states |2) ® |2) and |3) ® |3) are longest. If g
is greater than 1, the situation changes and superpositions of the states |0) ® |0) and |1) ® |1)
are most stable so that there is a qualitative change between the two insets that correspond to
the values g = 24/25 and ¢ = 26/25. The third and fourth levels are occupied only above
the threshold values 7 = 1 and v = 4/3 for all values of q. However, the distribution of
Schmidt coefficients at a given tangle t > 1, depends on g rather strongly: whereas the large
Schmidt coefficients are of comparable size while there is a single small Schmidt coefficient
for ¢ < 1 and for ¢ > 1, it is more favorable to have more broadly distributed Schmidt
coefficients for ¢ ~ 1. Although the interpretation of Schmidt coefficients is qualitatively
different from those in figure 1, basic reasoning in the interpretation is rather similar to the one
above: for values of ¢ that differ strongly for 1 (i.e. ¢ < 1 and g > 1) there are two states
whose coherent superposition dephases significantly slower than the coherent superposition
of any other pair of levels. Therefore, it is favorable to have potentially large amplitudes for
these states, and additional levels are excited only to the extent that is necessary to realize a
given amount of entanglement. Since the impact of dephasing depends only on the magnitude
of the density matrices’ coherence, but not on the occupations, it is indeed favorable to have
nearly equally large occupation of the levels whose coherent superposition is rather stable,
since this allows us to reach rather high entanglement with comparatively small excitation of
fragile levels. For g ~ 1 the situation is rather different. Now, there is not such a preferred
pair (or group) of levels whose coherent superposition dephases most slowly. However, there
is one state (the ground state for ¢ < 1 and the fourth state for ¢ > 1) whose coherent
superpositions decay slightly slower (at given difference in the exitation number) that those of
other states. Therefore, in this regime states that have a rather large amplitude for these states
have favorable dynamical properties, and the potentially large occupation of the least fragile
levels gives rise to the rather broad distribution of Schmidt coefficients.

2.4. Numerical confirmation

So far, we have been assuming that the optimal states have their Schmidt bases given in terms
of the environment-induced pointer bases. Figure 3 shows a comparison of the algebraic
solutions obtained under this assumption with numerical solutions, where the optimization
has been performed over general initial states. The left inset displays the logarithm log(—1)
of the temporal increment 7 of the tangle for different values of g. Apparently, all numerically
obtained data points lie above the algebraic solutions that are shown as lines. This implies that
no improvement in the optimization can be obtained dropping the assumption on the Schmidt
bases. Besides that, there are also several data points that lie significantly above the algebraic
solutions. These points correspond to local maxima that pose a serious challenge to numerical
optimizations, that, however, are hardly a problem for our algebraic solutions. The right
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Figure 3. Comparison of numerically optimized temporal increment of the tangle and optimized ¢
with pointer bases as Schmidt bases: the left inset corresponds to the situation of dephasing and the
right inset to spontaneous decay. The circles, squares and triangles display the numerical solutions
forq = 1/4,1/2,3/4,1,5/4 and 3/2 (from bottom to top), and the lines show the algebraically
obtained solutions as a function of the parameter ¢ defined in equations (9) and (8).

inset of figure 3 shows the analogous situation for decay. Here, the numerical optimization is
significantly more reliable than in the case of decoherence, and there is only one data point
that corresponds to a local maximum. Thus, the conjecture that Schmidt and pointer bases
coincide is justified by the data shown.

2.5. Long-time behavior

Finally, let us compare the optimal solutions that have been obtained with the approximation
equation (2) with the time dependence of the state that is not subject to this approximation.
Here, we use the bounds [18, 19] that are known to provide a very accurate estimate of
concurrence, in particular for weakly mixed states, which is exactly the situation that we
are dealing with here. The black line in the left plot of figure 4 shows the time evolution
of 7 for the state with initial tangle ty = 7/3 for decoherence with ¢ = 1. The gray lines
show the tangle for 1000 randomly chosen states with the same initial tangle. The tangle of
the optimized case clearly decays significantly slower than that of the other states, and the
optimized states carry sizable entanglement at times where most other states have become
separable. The left plot of figure 4 shows the analogous situation for decay with ¢ = 1/10
and initial states with initial tangle T = 8/3. Here, we have been choosing a very small
value of g, since in this case the different excited states have comparable decay times so that
the formation of a pointer basis is not very pronounced. Therefore, this example is a rather
challenging test for our approach that assumes the existence of such a basis. In contrast to the
left plot, there is no gap between the time evolutions of the random states and the optimized
one, and the inset that shows a zoom for the short time behavior indicates that there are a
few states that have a slightly more robust entanglement than the state that was found ideal.
However, the differences between the tangle of the optimized state and the tangle of the most
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Figure 4. Time dependence of tangle for the obtained most robust states (black line) and 1000
randomly chosen initial states with a given initial tangle 7o. The left plot corresponds to decoherence
(equation (8)) with 7o = 7/3, the right plot to decay (equation (9)) with 79 = 8/3.

robust random states is within the error margins of the different estimates of a mixed state
tangle.

Another feature that strikes the eye here is the fact that in both insets of figure 4 the
tangle of the initially optimized states turns out to be most robust over all times, although
the optimization has only been performed for the initial time step. Whereas this is a mere
observation here, a more rigorous footing for the generality of such behavior—that would
exceed the scope of the present letter by far—will facilitate the search for robust mixed states
tremendously. In particular, prior observations that the dynamics of entanglement [20] is often
characterized very well by the first infinitesimal time step strongly substantiate our conjecture
that optimal mixed states are actually given by the decay products of initially pure states.

3. Outlook

Here, we have been focusing on bipartite system. The same ideas of maximizing the temporal
increment of tangle can also be applied to multipartite systems for which equation (1) can
be generalized [21]. The investigation for bipartite systems was facilitated with the Schmidt
decomposition. For general multipartite systems, however, there is not a simple generalization
of this tool, and there is an abundance of different classes of multipartite entangled states
[22, 23] that draws a very intransparent picture of entangled states. Similar to the bipartite
case, where the Schmidt decomposition could be reproduced via the most robust states under
very general situations of environment coupling, we expect that similar investigations on
multipartite systems will allow us to identify robust classes of entangled states and provide a
significantly more physical characterization of multi-partite states than a mere distinction of
mathematical classes can provide.
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